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THERMAL NOISE I N  SPIN-PHONON SYSTEMS 

Harold A. Sabbagh 

Rose Polytechnic Institute 

ABSTRACT 

Starting with the combined lattice and spin-lattice Hamiltonian densities, 

field equations for transverse elastic waves a re  derived. An electrical trans- 

mission line analog i's established which employs an "impedance" function 

(matrix) calculated using the density-matrix formalism for the interaction of 

a paramagnetic spin system with acoustic vibrations. 

Associated with the impedance function is a continuous distribution of 

thermal noise "voltage" sources whose statistical characteristics a re  de- 

termined by a form of the (Nyquist) "fluctuation-dissipation" theorem. The 

significance of positive and negative temperatures on the spectral-density of 

the noise sources is pointed out. 

Application of the theory is made in determining the spatial correlation 

and spectral densities of the resultant acoustic noise fields in infinite and 

bounded systems. 
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THERMAL NOISE IN SPIN-PHONON SYSTEMS 

INTRODUCTION 

With the advent of acoustical devices in engineering systems,(') it is de- 

sirable to investigate noise properties of phonon systems. A particularly in- 

teresting study is that of paramagnetic ions doped into an elastic medium, for 

this can serve as a model for a spin-phonon maser, adjustable acoustical delay- 

line, etc. 

The problem of thermal noise in electromagnetic systems has been in- 

vestigated (Haus, 1961; Vanwormhaudt and Haus, 1962; Landau and Lifshitz, 

1960), and has been applied to electromagnetic masers (Siegman, 1964). It is 

appropriate to adapt some of the ideas presented in those earlier studies to the 

problem at hand, namely thermal noise fluctuations in an elastic system. 

Our approach to the problem is to determine the lattice and spin-lattice 

H a m i l t o n i ~  densities and then derive the canonical field equations appropriate 

to the model. We then deduce the spin-phonon susceptibility matrix which re- 

lates the strain-vector to a spin-induced stress vector and from this determine 

an electrical transmission-line analogy. 

At this point contact can be made with the earlier investigations mentioned 

above in determining the spectral densities of certain fictitious noise %oltage" 

(l)See for example Proc. IEEE (special Issue on Ultrasonics), Vol. 53, No. 10, October 1965. 
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sources. These sources act as inhomogeneous terms in the transmission-line 

equations, which are solved for either unbounded o r  bounded configurations 

using Green's functions. Once the "voltage" and "current" on the transmission- * 

line are determined, it is quite straightforward to calculate their' spectral-densities. 
1 

HAMILTONIAN DENSITY FOR A SPIN-PHONON SYSTEM 

Hamiltonian Density of an Elastic Medium 

The Hamiltonian density of an elastic medium is an expression of energy per 

unit volume given in terms of momenta, displacements, derivatives of displace- 

ments (strains), etc. The total energy (kinetic plus potential) residing within a 

certain region of space is given by the integral over that region of the 

Hamiltonian density. 

The lattice (elastic) Hamiltonian density for an isotropic medium is given 

by (Morse and Feshbach, 1953): 

where p = mass density, and p and h are the two elastic constants specifying the 

stress-strain relationship of an elastic medium. ux , uy, u are the components 

2 



of the vector displacement of the medium at x, y ,  z, while p, = , o ( d u J d t ) ,  

= p ( d y / d t )  , p, = p ( d u , / d t )  are the components of the momentum density PY 

at x, y and z. 

The momentum terms in (1) are the kinetic energy density while the re- 

maining terms are the potential energy density arising from the stress-strain 

interaction. 

Hamiltonian of a Paramagnetic Spin System (Spin Hamiltonian) 

The spin Hamiltonian is a quantum mechanical operator function of spin 

operators (Bleaney and Stevens, 1953; Bowers and Owen, 1955). Its eigenvalues 

are the allowed energies of the (unperturbed) paramagnetic ion, and its eigen- 

vectors are  the states corresponding to the allowed energies. 

The energy levels are important to the determination of operating (resonant) 

frequencies of paramagnetic devices, such as masers, while the eigenvectors 

are used to determine the matrix elements, or transition probabilities, which 

indicate the "strength" of interactions between the elastic system and the spin 

system. 

Interaction Hamiltonian Density (Spin-Lattice Hamiltonian) 

In order to describe the interaction between the elastic and spin systems, 

one needs a Hamiltonian density which involves elastic variables (displacement, 

strain, etc.) and spin operators (Tucker, 1965). There are three important con- 

ditions that such a Hamiltonian must satisfy (Van Kranendank and Lee, 1966): 
i 
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1. Hermiticity: The spin-lattice Hamiltonian density must be Hermitian. 

This guarantees that the interaction energies (the eigenvalues of the 

Hamiltonian) will be real. In order that the Hamiltonian be Hermitian 

it must be a function of the elastic variables, d.c. magnetic field, 

and spin operators. All combinations of spin operators appearing in 

the Hamiltonian must, themselves, be Hermitian. 

2. Time-reversal invariance: Because the spin-lattice coupling involves 

electromagnetic interactions , due to the presence of a spin-vector and 

an external magnetic field, the spin-lattice Hamiltonian must be in- 

variant to time-reversal. This means that upon changing the signs of 

the external d.c. magnetic field and spin-vector, the Hamiltonian becomes 

complex- conjugated. 

3. Point symmetry: Finally, the spin-lattice Hamiltonian must be in- 

variant under the group of operations corresponding to the point sym- 

metry of the paramagnetic ion's site in the host crystal. Thus, if we 

assume that the ion occupies a site of octahedral symmetry within the 

crystal, the interaction Hamiltonian density must be invariant under 

the operations of the octahedral group. 

These conditions imply that the continuum (long-wavelength) limit there 

will be four possible forms for the open-lattice Hamiltonian density, XJ 



A, - A, are empirically determined constants, N = no. of ions per unit 

volume, H o  is the d.c. magnetic field, and3 is the ion's spin-vector operator. 

Also cab  = 1/2 (dUb/dXa -t dua/&tb) is the strain-tensor and 

The first three forms in (2) are linear in each of the variables Ho and 3, 

whereas the fourth is independent of 8, but depends quadratically on s. Con- 

trast these possibilities with the single Hamiltonian, g@ - s, of electromagnetic- 

spin interactions. 

The total Hamiltonian density for the combined spin-elastic system is given 

by the sum of the three Hamiltonians mentioned so far: 

where Ms is the spin-Hamiltonian. 

As (3) stands it is a mixture of a classical Hamiltonian, x,, and quantum- 

mechanical Hamiltonians, xs and xs$, involving spin operators. Eventually 
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we will take quantum average values of these operators and proceed 

classic ally. 

CANONICAL FIELD EQUATIONS 

One important reason for expressing the mathematical model of a physical 

system in terms of a Hamiltonian density is that one may derive the differential 

equations for a variety of different subsystems of the given system in a canoni- 

cal form. 

Because the spin subsystem in our problem requires a quantum-mechanical 

Hamiltonian formulation, it is natural to develop the elastic subsystem in a 

Hamiltonian manner, also. As previously mentioned, the latter Hamiltonian is 

classical, i.e., it  does not involve non-commuting operators. 

From here on we consider transverse vibrations propagating in the 

z-direction, the assumed direction of the d.c. field H,. Thus, in (1) and (3) 

we set p,, d / d x ,  d / d y ,  u,, H, and H, equal to zero. Note also that terms in- 

volving div (U) vanish. The resultant combination, H', of the lattice plus spin- 

lattice Hamiltonians becomes, after taking quantum-average values 

X Y 

H' = 6 (p.'+.,') t 5 [(%)' (a)'] 



where 

and the brackets denote quantum-averaging. 

Hamilton's canonical equations are [Morse and Feshbach, 19531. 

d dH'  d dH' d dH' dH' + - - - -  

(6) 
+ d y  8% 

-- dH ' - bz - - .  * -  

ax a(?) a(%) a' a(?) 
uz - dPZ ' 

where a dot denotes time-differentiation. 

Upon substituting (4) into (6 ) ,  the following system is obtained 

- - d 2 u x  dMx 
t- ix - Px/P ; ri, - a2 

- -  
- py/p ; Y 
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All terms in (7) are classical; quantum-mechanical spin operators have 

been replaced by their average values. Equation (7) shows that the source of 

elastic vibrations is the gradient of the paramagnetic stress functions Mx and 

My. This agrees with the statements of Jacobsen (1960) and Seavey (1965) re- 

garding piezoelectric and magnetdc production of acoustical vibrations, 

respectively . 
Mx and M Y  are  not given a priori. They depend ondu,/dz and duy/dz (actu: 

the randomly fluctuating parts of Mx and MY can be considered to be given func- 

tions, independent of dux/d z and duy/dz .  We show this in another section). 

After determining Mx and MY as functions of dux/d z and duy/d z, we substitute 

the results back into (7) to obtain wave equations for ux and uy. The relation- 

ship between Mx, MY and dux/dz , du,/d z involves the spin-phonon susceptibilit 

matrix. 

SUSCEPTIBILITY MATRIX 

Because the spin system is an atomic system we must resort to quantum 

mechanical principles for calculating average values of the pertinent spin 

operators. A useful tool for this purpose is the density matrix (Sabbagh, 196 

Slichter, 1963). 

Every quantum-mechanical operator may be given a matrix representat. 

by choosing a complete, ortho-normal basis system of vectors. The basis tl 

” 

‘ 

we will use will be the eigenvectors of the spin-Hamiltonian. 
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The average value of operator, A, then is given by 

where T r  denotes the trace (sum of diagonal elements) of a matrix, p i j  is the 

i j element of the density matrix, and A j n  is the j nth element of the matrix 

representation of the operator A. If there are p energy levels in the paramag- 

netic spin system, all matrices will be P x P .  

To a first (linear) approximation the diagonal elements, p,,, m = 1 . . , p 

of the density matrix remain constant at their thermal-equilibrium values, pi:).  

The off-diagonal elements, to the same order of approximation, satisfy the 

system of linear equations 

- where m # n and m ,  n = 1, . . . , p. 

ing to the difference between the nfh and me unperturbed energy levels. The 

rls are time-constants related to the return of the spin system to thermal 

equilibrium after a transient perturbation. Finally, gS$ 

element of the spin-lattice Hamiltonian operator. All matrix elements are 

between the unperturbed eigenstates of the spin-Hamiltonian. 

umn - En - E f i  is the frequency correspond- 

is the mnfh matrix 
m n  
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In the sinusoidal steady-state azlsd , for a single ion, becomes (see (5)) 
m n  

The asterisk denotes complex conjugate and the field amplitudes Ux, U, are 

independent of time. In (10) we have made the definitions 

Sx' = (Az + A3)  H, Sx f A4(SZ Sx +Sx S z )  

Sy' = ( A 2  +A,)  H, S ,  + A4(SZ S ,  + S ,  S z )  . (11) 

The solution of (9), given (lo),  is easily obtained because of the sinusoidal, 

steady-state condition (it is equally easily obtained as a convolution integral, 

as well) : 
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where 

1 D- = - j ( w $ , - w )  t - 

1 D+ = - j ( w t , t w )  t X  

Comparing (5) and (8) we see that 

After carrying out the operations implied in (14) (using (12), of course), 

dropping any time-independent terms and rearranging, we get 

e j o t  t complex conjugate - a UX a u Y  
Mx - a x x p  aZ e j w t  a x y p  

, j o t  + complete conjugate.  (15) 
d u x  

MY - ayxp  a z  y y p  dz - - e j w t  + a 

In (15) 
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nl(T) = thermal equilibrium no. density of ions in state 1, etc. 

The two-by-two matrix with entries axx, axy, uyx and ayy is the spin-phonon 

susceptibility matrix. 

Consider axx, for it is typical of the other three functions. It consists of a 

summation over pairs of energy levels (with 1 < m )  of terms whose real and 

imaginary parts a re  of the form 

We see quite clearly the role played by the matrix.elements Sim in determining 

the interaction strength between spins and phonons. 

" 

The functions shown in (17) are remiriiscent of the real and imaginary parts 

of immitance functions of RLC circuits. w.emis  the resonant frequency of the 

resonant circuit corresponding to the &nth pair of energy levels and 2/r& is the 
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half-power bandwidth of this same We conclude, therefore, that the 

spin-phonon susceptibility functions are analogous to a series combination of 

RLC resonant circuits. 

E LE CTRIC TRANSNIISSION-LINE ANALOGY 

To develop the electric transmission-line analogy we start with (7), which 

may be combined to give 

a 2  U, d 2 u x  JMx - Pdt2 - y g + - E  

We establish the analogies 

Note that when y au/Jz (= stress) is multiplied by du/d t (velocity), power/ 

area is obtained. If we imagine one-dimensional wave propagation through a 

unit cross-section, then stress x velocity x .ern2 yields power which is v x i. 

Hence, the aptriess of the analogy. 

13 



In terms of the "electrical" variables, (18) becomes 

a i y  dvy dMy 
t - .  - 

P X  - - d z  d z  ' 

Upon taking the Fourier transform of (20) and using (15) we get the vector- 

matrix equations 

a 

+aYY x y  ] ~ : ~ ~ : ]  

To simplify matters, we assume a wave linearity polarized in the x-direction. 

Therefore, after setting Vy = Iy = 0 and dropping subscripts, (21) becomes 

14 



These equations are obtained from the incremental transmission-line con- 

figuration shown in Figure l(a), Observe the series impedance 

where a,is the real-part and aI the imaginary-part of a, and shunt admittance 

j d p  

When we recall the summations appearing in (16), we may redraw Figure 

l(a) using a series combination of impedances as in Figure l(b). Each im- 

pedance is associated with an energy-level pair as in (17). 

Now that we have established an electrical analogue, it is rather straight- 

forward to develop the thermal noise source associated with the dissipative 

mechanism of the transmission-line. 

v 

Z 

Figure l(a). Incremental Section of Analogous Transmission- 
line Yielding Equations (22) 
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i -An, 

" T  

I 1 

Figure l(b). Illustrating Expansion of Impedance into a Series Combination in Accordance 
With (16). Each Block Corresponds to an Energy-level Pair. 

THERMAL NOISE SOURCE 

An expressi0.n for power-dissipation in terms of a may be obtained from 

(22) by multiplying the top equation by I*, conjugating the bottom, multiplying 

the result by V, then adding the two equations and taking one-half of the real-part: 

dP 1 WPaI , , a  I I I  P 
n 

The second equality in (23) shows that each energy-level pair contributes 

to the overall change in power along the line. If aI is negative for the i f h  

energy-level pair, then that pair contributes gain (maser action at the correspond- 

ing resonant frequency). Otherwise we get dissipation'(or absorption) of power. 

Now we shall show that aI is associated with the spectral density of noise 

sources arising from the series impedances. The generalized Nyquist theorem 

(Davenport and Root, 1958; Twiss, 1955) asserts that the thermal noise associated 

i 

i 
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with a lossy network at temperature T is equivalent to fictitious noise sources 

connected to the terminals of the network. The spectral densities of the sources 

are related to the dissipative properties of the network. This result, general 

as it is for electrical networks, is a special case of the "fluctuation-dissipation" 

theorem satisfied by all physical systems in thermal equilibrium (Landau and 

Lifshitz, 1958; de Groot and Mamr, 1962). 

By the spectral density of a random process, x( t) ,  we mean 

sx ( w )  = 1 imE [IXT (4 '3 9 

T-00 

where 

(24) 

and E[ 1 implies the expected value of whatever is within the braces. Through- 

out this report when we speak of the Fourier transform of a function we mean (25). 

The significance of the spectral density lies in the fact that the expected 

mean-square value of x( t ) is given by 

J - m  

By the "one-sided" spectral density we mean 2 Sx (a) with the integration in (26) 

extending only over positive frequencies. 
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Before determining the noise sources associated with each block in Figure 

l(b) we make the following preparatory remarks. The noise properties depend 

on the "temperature" of each block. If the spin system were in thermal 

equilibrium with the lattice, each energy level would be populated according 

to the Boltzmann distribution with a single temperature T. Then the ratio of the 

populations of any pair of energy levels would be simply 

n E, - E j  
j -  

kT - _  
"i 

(27) 

where k is Boltzmann's constant and Ei and E j  are the energies of the i * and 

j a levels. 

In the presence of an external source (such as a pump in a phonon maser), 

however, the distribution of populations will be altered radically. For example, 

one pair of energy levels may have an inverted population (more ions in the 

higher than lower energy level), and another may have equal populations etc. 

If we assume that we may always define an equilibrium temperature between 

pairs of energy levels so that (27) is satisfied, then there will be as many 

equilibrium temperatures associated with the spin system as there are pairs 

of energy levels. In the examples above the inverted populations correspond 

to a negative temperature, while the equally populated pair of energy levels 

corresponds to infinite temperature. 

An important result is that there is a correspondence between aI and Ti, 
i 

the temperature of the i a pair of energy levels (or the i 3 spin subsystem). 
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When Ti'> 0, (17) and (27) show that aI > 0; Ti'> 0 corresponds to aI < 0, and, 

finally, when Ti = a, then aI = 0. These results hold for positive frequencies. 

Because aI is an odd function of w, the reverse of each holds for negative 

frequencies. From (23), however, we note that the significant function is w a  I i, 

i i 

i 

i 

which is positive, negative, or zero, corresponding to the above temperature 

ranges, at - all frequencies. 

In order to determine the spectral densities of the fictitious noise sources 

associated with each impedance block, we remove the m f h  box in Figure l(b) 

and connect a series noise voltage source to account for the thermal noise fluc- 

tuations at temperature T, (see Figure 2). To this combination we connect a re- 

sistor R m A z  at temperature T, (Figure 3(a)). 

The spectral density of noise power delivered to R, Az is easily calculated 

to be 

where S, ( w )  is the spectral density of e,. 

The resistor at temperature Tm is, itself, a noise source and may be con- 

sidered to be a voltage source eR AZ in series with R, & (see Figure 3(b)). The 

spectral density of the noise power delivered by the resistor to Z,Az is 
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At thermal equilibrium (28) - m d ~ 2 ~ r n G f b ~ ~ & a l ,  which means that 

I I 

Figure 2. m- th NoiseVoltage Source in Series with m- th 
Impedance Block at Temperature T,. 

Rm Az 

Figure 3(a). Circuit for Calculating Noise Power Delivered to 
R, Az at Temperature T,. 
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0 Z, Az 

4 

The one-sided spectral-density of e R A z  is (Davenport and Root, (1958)) 

4kT, Rm Az, which implies that Se (a) 4kT, RJAz. Thus, (30) becomes 
R 

+ - 

4kTm w p a ~  m 
(3 1) 

- S m ( W )  - - * AZ [ l + a 1 2  

This is the spectral density of a source at temperature Tm lying within the 

interval ( z ,  z + Az). Such a source is statistically independent of all sources 

lying within any other intervals, no matter how fine we make such intervals. 

Thus, taking the limit AZ + 0 in (31) we obtain for the expected value of 

* 
em ( 2 1 )  em (z2): 

where F ( z  - z ) is the Dirac delta function. 
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kTm is the low-frequency (or high-temperature) limit of the quantum- 

mechanical expression 

exp (e) - 1 ' 

* which means that our final result for the expected value of em ( zl) * em (22) is 

This is the important relation between a I  and the noise source at temper- 
m 

ature Tm. Nott that. the frequency dependent coefficient of the delta function in 

(33) is always positive, regardless of the sign of T,, because, as was shown 

above, Tm and aI take the same sign. Another important feature is that (33) 

has a peak at the resonant frequency of the mth  energy-level pair and then falls 

off to essentially zero outside the 2/r  bandwidth centered at the resonant frequency. 

rn 

If the i t h  and j th energy levels together comprise the m t h  energy-level 

pair and if the no. density of ions occupying this pair of energy levels inN, then 

- ni + n j  - Nm 

ni - nj exp (":3 k~ = 0 (34) 
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imply that 

- n i - n  - Nm 
j 

where hum = E, - Ei . 

exp (“m)-  lq 1 

(35) 

Upon comparing the imaginary part in (17) with (33) and (35), we see that 

(33) is proportional to 

As Tm approaches infinity this function approaches 2Nm Ew; it approaches zero 

as Tm -+O+, and, finally, it approaches 4NmEu as Tm-‘O, (complete population 

inversion). Each of these results is consistent with the fact that thermal noise 

of this type originates with ions occupying the higher energy level of a given 

pair. Such spontaneous emission noise is discussed with reference to electro- 

magnetic masers in Siegman (1964). 

Each generator associated with an impedance block in Figure l(b) (see Fig- 

ure 2) satisfies (33) with the appropriate temperature and a*. In addition such 

generators are statistically independent of each other, even though they lie 

within the same interval. Because of the series connection of impedance blocks 
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and noise sources and because of the independence of these sources, it follows 

that the total noise voltage source, eAz, is just the sum of each of the individual 

noise sources within the small interval and we have 

where P, again, stands for the total number of impedance blocks (which is equal 

to the total number of energy-level pd r s  in the paramagnetic spin system). 

If we insert eAz in series with the series impedance in Figure l(a) we can 

derive an inhomogeneous system of equations satisfied by the fluctuating field. 

Kirchoff's voltage and current laws give, respectively, 

j wp Az 
V ( z + A z )  = I ( z + A z )  + eAz t V(z) 

w 
I ( z + A z )  = I ( z )  + j p A z V ( z ) .  

After rearrangement, division by AZ and passage to the limit Az 0, we get 

Equation (38) differs from (22) only in the explicit inclusion of the com- 

posite noise source voltage-gradient e( z). 

24 
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Finally, let us say a few words about the spectral density of the random 

sources associated with the complete vector system (21). We will consider the 

special case in which a X x  = a 

ditions yield circularly polarized acoustic waves and have been the subject of 

some study (Muller and Tucker, 1967). 

- - - - -a - a', uxy - a2, because these con- Y X  Y Y  

The space rate-of-change of time-average power along the transmission- 

line is given by 

where A is the matrix appearing in (21), A-? is its inverse, and the superscript 

dagger denotes conjugate-transpose. 

By the assumed direction of current flow (right-to-left), the right-hand side 

of (39) must be non-negative for any I,, 1, if the transmission-line is dissipative 

(absorptive). A straight-forward, though tedious, calculation shows that 

j w p  [A-' - (A- ' )+ I  is indeed a positive, semi-definite matrix 

(non-inverted) population. 

for a normal 

Because we have a vector system we must associate two random funetions 

ex (2) , ey (2 )  with the dissipation matrix jwp [ A' - ( A - ' ) + I  just as we as- 

sociated a single source with the impedance jwp / l  + a. Corresponding to (33) 

25 



we have the spectral density matrix 

which is positive semi-definite. 

The inhomogeneous equations corresponding to (21) are  

CALCULATION OF OUTPUT NOISE SPECTRAL DENSITIES 

As applications of the preceding developments we shall calculate the "voltage" 

and "current" (actually, strain and velocity) spectral densities for various con- 

figurations. The first configuration will be simply an infinite slab of unit cross- 

section, and we shall determine the spatial correlation function as well as 

spectral density. The other configurations will both be finite systems with a 

signal source at one end and the other end either free or terminated in the ap- 

proximate characteristic impedance of the acoustic medium. In either of the 
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latter two cases we will calculate the output spectral densities. The solutions, 

of course, ,are determined as boundary value problems. 

Correlation and Spectral Density of Noise in an Infinite Region 

We start with (38) expressed in vector-matrix form 

dv 
= m + e  

where 

0 

w 
-J/.  

. UP 
J -1 

0 

- 
e i3 (4 3) 

The solution of (42) is written in terms of a 2 x 2 Green's matrix, G( z - z '  ): 

m - 
V(z)  = J-.G(z- z ' ) Z ( z ' ) d z '  . 

where g( z - z' ) satisfies the matrix differential equation 

dG z -  MG = Z ( z - z ' ) U .  

(44) 

(45) 

U is the 2 x 2 identity matrix. 
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In component form (44) is 

g, , and g, being elements of G. 

After some manipulations and use of (33) and (36) we obtain for the spatial 

correlation functions of V( z )  and I( z): 

28 



where r = z 1  - z2. These results show that the random processes V( z )  , I( z )  

are stationary in space in the sense that their spatial correlations depend only 

on the difference r = z - z2 and not an z 1, z2, individually. 

From here on we will assume that all energy-level pairs are at the same 

temperature so that the summation appearing in (47) is replaced by the single 

term 

4EGJ 
= S ( w )  . 

I I + a f 2  
exp (") kT - 1 

Because the V and I processes are stationary it is convenient to introduce 

the wave-number representations, H, (k) ,  HI (k), in order to calculate the 

correlation functions: 

m 

= R, ( r )  e- j  k r  dr . 

Upon substituting (47) (which are really convolution integrals in space) into 

(48) we obtain 

H, ( k )  = S ( u )  61, (k )  G,y; ( k )  



where G , , ( k )  and G, , ( k )  are spatial Fourier transforms, respectively, of 

g ,  , (z), g ,  , ( 2 )  (the wave-number representation, (48), is, of course, the 

spatial Fourier transform). 

The calculation of G,, (k) ,  G, , ( k )  proceeds most simply by taking the 

(spatial) Fourier transform of (45): 

G(k) is then given by 

which, after substituting the matrix M, from (43), and identifying the 11 and 21 

elements of the result, yields 

c 
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Upon substituting (52) into (49) and then taking the inverse transform of (48), 

we get 

2 
m (f) e j k r d k  

'-m [a2 ($) & - k2] [a2 (5) * (53) 
- 

1 R, ( r )  - 
- k2] 

We use residue theory (Churchill, 1960) to evaluate these integrals. The 

poles of the integrands are located at a f j b, a - j b , -a - j b, -a f j b in the com- 

plex k-plane, where 

r (SY - 1/4 

L 

Note that the poles are symmetrically distributed about the real and imaginary 

axes. 

We close the contour with a large semi-circle lying in the upper half-plane 

for r > 0 and lying in the lower half-plane for r '<O. This assures that contributions 
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to the overall integral a re  negligible as the radii of the semi-circles go to 

infinity. The calculation of the residues is quite straight-forward with the re- 

sult that 

- S ( a )  R , ( r )  - e-b Irl ( a c o s a r - b s i n a  I r l )  

The correlation functions a re  even in r .  We introduce the terms correlation 

length and correlation wavelength for l/b and 277/a, respectively. Due to the 

presence of an imaginary part in a, we see that the farther apart in space two 

noise samples a re  measured (in the frequency domain) the less correlated they 

are. 

Upon letting r = 0 in (55) we obtain the spectral densities S, (a), SI (a) of 

the V and I processes, respectively. Thus, substitution of (54) into (55) gives us 
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These results admit the following interesting interpretation. From Figure 

l(a) the "inductance" per-unit-length is seen to be p/l + a and the "capacitance" 

per-unit-length is -1/p. Hence, the magnitude of the wave impedance is 

1 /2 (-1 (5 7) 

Therefore, upon dividing S, (u) by (57) or multiplying SI (a) by the same 

function we get the spcYral-densities of the power associated with the 9oltage" 

and "current" processes, respectively. The power spectral-densities are equal 

and their sum is 

4 

If the spins are brought into thermal equilibrium with the acoustic medium 

at temperature T, ana then if the medium is made nondispersive by setting 

a( w) = 0, we get the phonon thermal equilibrium result 
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Our results a r e  general in that they contain this result as a special case. The 

corresponding result for electromagnetic radiation in 3-dimensional space is 

given in Landau and Lifshitz (1960). 

Signal Source and Free Termination 

Consider a signal source connected at z = 0 and the end z = L left free. If 

we take the actual (acoustic) source to be an imposed strain then the electrical 

analogue is a voltage source. The free surface at z = L appears electrically to 

be a short-circuit because a free surface cannot support a shear-stress. Since 

stress is given by 

d u  d M  a U  
p Z i  + -  a z  = p(1ta) = (l+a)V, 

we see that V(L) = 0, hence, the short-circuit termination. 

Our concern is with the calculation of the spectral-density of the current 

(velocity) at z = L due to the signal and noise. We take the signal and noise to 

be uncorrelated. We start with (38) and the boundary conditions 

V(L) = 0 , (59) 

where Es (a) is the Fourier transform of the "voltage" signal source connected 

at z = 0. 
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The output current will be a superposition of the currents arising from E, 

and the noise source e( z), each acting alone. We label the voltage and current 

arising from E ,, V, and I,, while that resulting from e( z), V, and I,. V, and I, 

satisfy (38) with e( z )  set equal to zero and the boundary conditions (59). V,, 1, 

satisfy (38) and the boundary conditions V, (0) = V, (L) = 0. Then V = V, + V, 

and I = I, + I, satisfy (38) and (59). 

It is a simple matter to show that V, and I, are given by 

= .( 's) cos k ( L -  z )  
1, ( 2 )  J To s i n k  L 

9 

where 

p 1/2 

= (p(1.a)) ZO and 

We next postulate a noise solution of the form 

V, ( z )  = JoL g, ( z ,  z ' )  e(z') dz'  

g ,  ( 2 ,  z ' )  e ( z ' )  dz'  
0 
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with the voltage and current Green's functions satisfying 

The boundary conditions on dg,/dz are a result of the conditions on Vn. 

Implicit in (62) are conditions of continuity of g, at z = z '  and discon- 

tinuity of amount j w / p  in the derivative of g ,  at z = z '. 

The result of applying these conditions to (62) is that 

- w c o s k z ' c o s k ( z - L )  
- j - p  k s i n k L  ( I 

- - s i n k z  c o s k ( z '  - L )  
gv(z9 z ' )  - sin k L  1 

- - s i n k  ( z  - L )  cos k z '  - 
s i n k  L > 

+ 
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The noise solutions thus become 

s i n k ( z - L ) c o s k z '  
s i n  k L  e ( z ' )  dz' 

s i n k z c o s k ( z ' - L )  
s i n k  L 

e ( z ' )  dz' 

c o s k z '  c o s k ( z - L )  
k s i n k L  e( z ' )  dz' 

(64) e ( z ' )  dz' . 1 c o s k ( z ' - L ) c o s k z  
+ I: k s i n k L  

The total output current (velocity) at z = L is obtained by adding Is ( L )  and 

I(L) = 2, s i n k L  [Es + loL cos k z '  e( z ' )  dz' 1 . (65) 
j 

The spectral density SI ( w )  of I (L)  is obtained easily by using the fact that 

Es and e( z )  are uncorrelated (i.e,, E[Es el = '0) and also using (33) and (36). 

Hence, upon multiplying (65) by its complex conjugate and taking the expected 
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value we obtain 

L 

where Ss is the signal spectral-density. 

Since the integrand appearing in (66) is non-negative it follows that in- 

creasing L, the length of the acoustic medium, results in a larger noise con- 

tribution to the output current (velocity). This is to be expected because each 

elementary noise generator within the structure contributes noise independently 

to the output. Therefore, the longer the structure the more contributing noise 

sources present. 

In accordance with (26), the expected mean-square value of the output cur- 

rent is given by the integral (66) overall positive frequencies. If the signal applied 

at z = 0 is Es cos w s  t then Ss ( w )  = TE; 6 (w- us) and 

where N(w) is the second term in (66). By choosing L appropriately it is pos- 

sible t o  make the denominator of the first term in (67) small (if k ( w , )  were 
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real, we could make the denominator vanish) and therefore amplify the signal, 

without amplifying all frequency components of the noise, simply by resonating 

the structure at the signal frequency. 

Signal Source and Matched Termination 

In this case we will assume that 1 a1 '<< 1 .  Under this condition Z,, the 

characteristic impedance of the spin-phonon system, is approximately ( p p )  ' I 2 ,  

which we take to be the terminating impedance. 

The boundary conditions are  

V(0) = E, 

V(L) = -I(L) - ( p p ) l / 2 ,  (68) 

which are also the boundary conditions satisfied by V s  and I, .  The boundary 

conditions satisfied by the noise are 

V n ( 0 )  = 0 

Vn(L) = - I n ( L )  - (pp)1/2 . 

The Green's function g ,  satisfies the boundary conditions 
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and the differential equations in (62). The solutions for g,  and g, are 

The total output voltage and current are given by 

- j k L  loL cos k z '  e(z') dz'  . e e-jkL - E s  
( P P )  ll2 ( PP 1 lI2 

I(L) = Is (L) + I , ( L )  = - 

In deriving (72) we have used the approximate value of Z o, stated earlier, and 

have set reflections equal to zero. 

1 
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The spectral densities of (72) are 

L- 

= exp(2kI L)  S(w) + 
exp(4kI  L) - 1 exp(2kI L) sin 

4k R 
t 

4% 

k,, k, in (73) (the imaginary and real parts, respectively, of k) are given in 

terms of a by -b, a, respectively, of (54). As a check on (73) we note that if 

each Tm = T > 0 then in the limit L- a, a + 0, in that order, we derive the results 

(56)  for  an infinite medium. 

For a signal spectrum concentrated at w s  

where N( w) is the second term in (73). 
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If k, (as) is positive due to a population inversion of the energy-level pair 

whose frequency separation is as, then we have amplification at the signal fre- 

quency (the phonon maser). A population inversion implies that for some m in 

(73), aIm and T, are both negative. N(a) , however, remains positive, as it should. 

It should also be noted in (73) that N( w) vanishes at those frequencies for which 

vanishes. In our discussion of a, we pointed out that it was non-zero es- 
uIrn rn 

sentially only in a bandwidth 2 / 7 4 ~ ~  wide, centered at Hence, this is the 

band of frequencies which contribute to N( a). 

. 
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